If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-605=0
a = 3; b = 0; c = -605;
Δ = b2-4ac
Δ = 02-4·3·(-605)
Δ = 7260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7260}=\sqrt{484*15}=\sqrt{484}*\sqrt{15}=22\sqrt{15}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{15}}{2*3}=\frac{0-22\sqrt{15}}{6} =-\frac{22\sqrt{15}}{6} =-\frac{11\sqrt{15}}{3} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{15}}{2*3}=\frac{0+22\sqrt{15}}{6} =\frac{22\sqrt{15}}{6} =\frac{11\sqrt{15}}{3} $
| 2z/9+1=10 | | 100-x/2=x+31 | | 0.5x^2+3x-4=0 | | 5(-4x+2)-5-3=257 | | 3y-3,5=9y-3,5 | | 0,5t+1=2t+1,5 | | 5+1,5t=3+2,5t | | 30+6p=7(p+6)–5 | | 4x+60x=30 | | 4x+60=x | | 4-4/(2x-1)-9=-5 | | 0=96-16x^2 | | 5a^2=9a=4+0 | | 0.55*x=100 | | 3(x+5)=5x-31 | | 4(5x-2)=2)(9x+3) | | 100/n=124 | | 50=5(x=5) | | a^2+9a+4=0 | | 9x-8=2x+11 | | 20+x+8x=60 | | x-3/4=1,1/2 | | g4=3.2 | | 2.5^x=1/6 | | 8x+42=x54 | | 7x+-2=-54 | | 3n-2=5n=12 | | 120/111=240/x | | 2(3x=1)=17 | | 4e+6-11e=-50 | | x2-3x+40=0 | | 7x+14=700 |